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An existing multiscale model is extended to study the response of a vascularised tumour
to treatment with chemotherapeutic drugs which target proliferating cells. The under-
lying hybrid cellular automaton model couples tissue-level processes (e.g. blood flow,
vascular adaptation, oxygen and drug transport) with cellular and subcellular phenom-
ena (e.g. competition for space, progress through the cell cycle, natural cell death and
drug-induced cell kill and the expression of angiogenic factors). New simulations suggest
that, in the absence of therapy, vascular adaptation induced by angiogenic factors can
stimulate spatio-temporal oscillations in the tumour’s composition.

Numerical simulations are presented and show that, depending on the choice of
model parameters, when a drug which kills proliferating cells is continuously infused
through the vasculature, three cases may arise: the tumour is eliminated by the drug;
the tumour continues to expand into the normal tissue; or, the tumour undergoes spatio-
temporal oscillations, with regions of high vascular and tumour cell density alternating
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with regions of low vascular and tumour cell density. The implications of these results
and possible directions for future research are also discussed.

Keywords: Multiscale modelling; hybrid cellular automaton; cancer; chemotherapy.
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1. Introduction

Even with widespread access to (and improvements in) screening techniques and
the development of more effective treatments, cancer remains a major cause of
premature morbidity in the Western world. While cure rates have improved dra-
matically for some tumours (e.g. breast and colorectal cancers),20 patient prognosis
is not consistently good across all cancers (e.g. lung cancer). The reason for this
remains an open question: is it due to increasing life expectancy, the cumulative
effect of exposure to carcinogenic compounds, diet or simply more accurate diagno-
sis resulting from better screening? What is clear, though, is that the vast resources
being invested in cancer biology and drug discovery have not yet translated into
significant improvements in the treatment and eradication of the disease. In order
to make further progress, clinicians need to understand why one cancer patient
responds well to treatment while another, similar patient does not. A key issue
here is the scheduling of therapy. In particular, if combinations of drugs are to be
used, how should they be coordinated? What level of patient-specific information
is needed to ensure optimisation of individual-based treatment protocols?

We contend that mathematics provides a natural framework within which such
questions can be studied. Since results can be obtained on a shorter timescale
than the corresponding experimental analyses, a wider range of alternatives can be
explored.25 Even so, we do not believe that mathematical modelling and simulation
will ever replace experimental work. Rather, it will form part of the toolkit available
to biologists, being used in tandem with experimental work, to suggest the most
promising directions for future research and, given sufficiently accurate data, to
predict those patients who are likely to respond to a particular drug or treatment
protocol.

Increasing numbers of theoreticians are now constructing mathematical models
that can be used to predict how the different physical mechanisms that act within
a tumour combine to produce observed phenomena and to determine the response
of specific tumours to chemotherapy (see Refs. 8, 38, 45 and 48 for reviews). For
example, early models developed by Greenspan and others1,28,29,37 to describe the
development of multicellular tumour spheroids (MTS) cultured in vitro assume that
growth is regulated by a single, diffusible nutrient (typically oxygen or glucose).
In spite of their simplicity, such models reproduce the dynamics of MTS and their
characteristic spatial structure, with fully-developed MTS comprising an outer rim
of nutrient-rich, rapidly proliferating cells, a central core of nutrient-deficient or
necrotic cellular debris and an intermediate annular region containing quiescent or
non-proliferating cells.16,30,31 These spatially-structured models have been extended
to predict the response of early (avascular) and mature (vascularised) tumours to
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chemotherapy.33–35 Other authors have developed lumped-parameter models, for-
mulated as systems of ordinary differential equations (ODEs) to study the response
of specific tumours growing in vivo to treatment7,15,42 and age-structured models
to predict the response of different tumour cell lines to drugs that target specific
phases of the cell cycle.9

The variety of factors involved in the development of solid tumours stems, to
a large extent, from the fact that “cancer” is a generic term, used to character-
ize a spectrum of disorders that share common features. At this generic level of
description, cancer may be viewed as a cellular disease in which controls that usu-
ally regulate growth and maintain homeostasis are disrupted. Cancer is typically
initiated by genetic mutations that lead to enhanced proliferation rates (or reduced
rates of apoptosis) and the formation of an avascular tumour. Since it receives
nutrients by diffusion, the size of an avascular tumour is limited to several millime-
ters in diameter. Further growth relies on the tumour producing growth factors,
including vascular endothelial growth factor (VEGF), that stimulate the ingrowth
of a new blood supply from the host vasculature via angiogenesis.17,18 Once vascu-
larised, the tumour has access to a vast nutrient source and rapid growth ensues.
Further, clusters of tumour cells that break away from the primary tumour, on
entering the vasculature, may be transported to other organs where they estab-
lish secondary tumours or metastases that further compromise the host. Invasion
is another key feature of solid tumours whereby contact with the host tissue stim-
ulates the production of enzymes that digest it, liberating space into which the
tumour cells migrate and/or proliferate. Thus, cancer is a complex, multiscale pro-
cess. The spatial scales of interest range from the subcellular level, to the cellular
and macroscopic (or tissue) levels while the timescales may vary from seconds (or
less) for signal transduction pathways to months for tumour doubling times.

In an attempt to account for its multiscale nature, Alarcón and co-workers4,5

have formulated a hybrid cellular automaton of vascular tumour growth that
extends earlier work by Gatenby and co-workers43 and links submodels which
describe processes operating on different spatial scales. Progress through the cell
cycle and the production of VEGF are incorporated at the subcellular level while
cell–cell communication and competition for resources are considered at the cellular
level. Finally, transport of nutrients and VEGF, blood flow and vascular adapta-
tion are included at the macro- or tissue scale (see Fig. 1). Coupling between the
different submodels is achieved in several ways. For example, local oxygen levels
which are determined at the macroscale influence both progress through the cell
cycle and VEGF production at the subcellular level. Conversely, the intracellular
production of VEGF modulates vascular adaptation at the macroscale.

While the model of vascular tumour growth described above is undoubtedly
complex, it has the potential to yield many predictions that could stimulate new
experimental investigations. One natural avenue that we explore here involves
using the model to compare the response of vascular tumours to standard ther-
apies that kill proliferating cells (e.g. doxorubicin and paclitaxel33,42). Equally,
we could investigate the response to antiangiogenic compounds (e.g. angiostatin,
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Fig. 1. Schematic diagram illustrating the structure of our hybrid cellular automaton model.

combretastain and endostatin19,40,53) that target the tumour vasculature. Our
modelling approach shares several common features with complementary work by
Anderson and coworkers.36,51 Like them, we base our submodel of vascular adap-
tation and blood flow on work by Pries et al.46 and view the vessels as distributed
sources for blood-borne nutrients and drugs. However, Anderson and co-workers
focus their simulations on a relatively short timescale following a bolus injection
and consider how the vascular network influences the predicted distribution of the
drug within the tissue. By contrast, we couple blood flow and the tissue dynamics
and consider longer timescales over which effects associated with the drug’s mode
of action are discernible. In consequence, we are able to obtain detailed spatio-
temporal information about the level of tumour cell kill and the extent of damage
to healthy tissue in response to different anticancer therapies. For example, when
using the model to predict the tumour’s response to drugs that target prolifer-
ating cells, we observe three types of behaviour: the drug is ineffective and the
tumour continues to grow; the drug is effective and the tumour is eliminated; or,
spatio-temporal oscillations are observed in which well-oxygenated (and drug-rich)
regions of high vascular and tumour cell density alternate over time with regions
of widespread cell death and reduced blood flow.

The remainder of the paper is organised as follows. In Sec. 2 we introduce
our hybrid model of vascular tumour growth. In Sec. 3 we extend the model to
investigate the response of a vascular tumour to treatment with an antiproliferative
chemotherapeutic agent and discuss the different outcomes that can arise. Finally,
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in Sec. 4 we summarise and interpret our results and discuss possible directions
for future research. We also discuss the mathematical challenges raised by this
modelling approach.

2. Model Development

Our multiscale model describes the growth of a tumour located within a region
of normal, vascularised tissue. It accounts for a variety of inter-related phenom-
ena which operate on different space and time scales. These features include cell
division, the expression of angiogenic factors (e.g. VEGF), competition between
normal and cancer cells, blood flow, oxygen transport and vascular adaptation.
The model is formulated as a hybrid cellular automata, with different submodels
describing behaviour at the subcellular, cellular and macroscopic (or vascular) levels
(see Fig. 1). Since the focus of this paper is on the tumour’s response to chemother-
apy, we summarise each submodel below and refer the reader to Refs. 4 and 5 for
further details. We stress that the submodels we describe below simply illustrate
how such a multiscale model can be assembled: the framework we present is gen-
eral, with considerable scope for incorporating more realistic (and, hence, complex)
submodels. This raises an important issue, namely whether the level of information
and detail incorporated at each spatial scale influences the system’s behaviour: this
will form the basis of future research.10

2.1. The vascular network (macroscale)

We consider for simplicity a vascular structure which is composed of a regular
hexagonal network (similar to that in liver tissue). We impose a pressure drop
across the vasculature, assuming that blood flows into the idealised “tissue” through
a single inlet vessel and drains through a single outlet vessel. To compute the
blood flow through each vessel we use the Poiseuille approximation, and, given
the initial network configuration (i.e. radii and lengths) we compute the flow rates
through, and pressure drops across, each vessel using Kirchhoff’s laws. We assume
that initially all vessels have the same radius, but allow them to undergo structural
adaptation over time. Following Pries et al.46 we assume that the radius R(t) of a
vessel evolves over a time period ∆t as follows:

R(t + ∆t)

= R(t) + R(t)∆t




log
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)
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In Eq. (2.1) Q̇ is the flow rate, Q̇ref , km and ks are constants, H is the haematocrit
(red blood cell volume), τw = R∆π/L is the wall shear stress acting on a vessel
of length L and π is the transmural pressure. The magnitude of the corresponding
“set point” value of the wall shear stress, τ(π), is obtained from an empirical fit
to experimental data. Thus the second term on the right-hand side of Eq. (2.1)
represents the response to haemodynamic stimuli. The third term describes the
metabolic stimulus which we assume increases as the haematocrit decreases. Cou-
pling to the subcellular level is achieved by assuming that km = km(V ) where
V denotes the local, extracellular VEGF concentration (see Eq. (2.3) below). We
account for the pro-angiogenic impact of VEGF by assuming that km(V ) is an
increasing, saturating function, of the form:

km(V ) = k0
m

(
1 + kV

m

V

V0 + V

)
,

for constants k0
m, kV

m and V0. Finally, the constant ks represents the so-called shrink-
ing tendency and is included so that, in the absence of mechanical and metabolic
stimuli, the vessel will atrophy. Pries et al. found that a third stimulus was required
for efficient structural adaptation.46 We justify omitting this phenomenon from our
model on the basis that tumour vasculature adapts less efficiently than normal
vasculature.

Once Eq. (2.1) has been used to update each vessel radius, the associated blood
flow and haematocrit can be determined. When updating the blood flow, we use
a complex function of H and R which was determined empirically in Ref. 46 to
describe blood viscosity. When updating the haematocrit, we assume that at branch
points H splits in a manner which is proportional to the flow velocity in each
daughter vessel.21

2.2. The diffusible chemicals (macroscale)

Coupling between the vascular, cellular and subcellular scales is effected by
the diffusive transport of oxygen and VEGF, under the assumption that oxy-
gen is the single, growth-rate limiting nutrient. We calculate their respective
distributions within the tissue by solving appropriate reaction-diffusion equa-
tions and imposing zero-flux boundary conditions. We justify adopting the
usual quasi-steady approximation in these equations on the grounds that the
timescales for oxygen and VEGF diffusion are much shorter than the tumour
doubling time which is the timescale of interest (minutes and weeks or months,
respectively).

We denote by P the oxygen concentration and treat the cells as sinks and the
vessels as sources of oxygen so that the relevant diffusion equation can be written:

0 = DP∇2P + hP (Pvess − P ) − λcellP. (2.2)
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In (2.2), DP denotes the assumed constant oxygen diffusion coefficient, hP is the
rate at which oxygen is transported across the vessel wall (hP is only nonzero where
vessels are located), Pvess = Pvess(H) is the oxygen concentration associated with a
haematocrit H (this is determined from the vascular problem). Finally, λcell denotes
the assumed constant rate at which cells consume oxygen, with different values for
normal and cancerous cells.

The local VEGF profile is calculated in a similar manner, except that cells now
act as sources of VEGF and vessels as sinks. If we further assume that VEGF is
rapidly eliminated from the vasculature (so that its concentration there is zero) and
denote by λV its natural half-life, then V satisfies

0 = DV ∇2V − hV V + γcell − λV V. (2.3)

In (2.3), DV denotes the assumed constant diffusion coefficient of VEGF and hV the
rate at which VEGF crosses vessel walls. Finally, γcell represents the rate at which
sites occupied by cells release their intracellular stores of VEGF to the extracellular
environment (this occurs only when the internal levels of VEGF exceed a threshold
value). As with λcell in Eq. (2.2), γcell differs between normal and cancerous cells.

We note that Eqs. (2.2) and (2.3) for P and V above differ from those used in
Refs. 4 and 5. There the vessels were treated as boundaries and exchange with the
vasculature was incorporated as a boundary condition rather than a distributed
source term. With a hexagonal network of vessels, this meant that oxygen and
VEGF were confined to hexagonal regions of the tissue. The simulations presented
below show how the modified equations resolve the physically unrealistic artefact
of the earlier simulations and allow the diffusible chemicals to spread more widely
through the tissue. As a result of our new treatment of VEGF, we observe spatio-
temporal oscillations in the tissue composition when the adaptation of the vascu-
lature is regulated by VEGF (see Fig. 5).

2.3. The cellular level

The dynamics of the cell colony is modelled using a two-dimensional cellular
automaton, with N × N automaton elements or cells.39 Each element is charac-
terised by a state vector, whose components correspond to features of interest.
These include: (i) occupation status (whether an element is occupied by a normal
cell, a cancer cell, an empty space or a vessel), (ii) cell status (whether the cell is in
a proliferative or quiescent state), (iii) the local oxygen concentration, and (iv) the
intracellular levels of VEGF, p53 and cell–cycle proteins (see Sec. 2.4). The state
vector evolves according to prescribed local rules that update a given element on
the basis of its own state and those of its neighbours at the previous time step.2

These rules were inspired by generic features of tumour growth, such as the ability
of cancer cells to elude the control mechanisms which maintain stasis in normal tis-
sues. They can also manipulate their local environment, providing themselves with
better conditions for growth and, eventually, for invasion of the host organism.24
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Additionally, we endow the cancer cells with the ability to survive exposure to
hypoxia for longer than their normal counterparts.

On each timestep the elements of the cellular automaton are updated sequen-
tially. If a particular element is occupied by a cell, we update its internal dynamics
(cell cycle proteins, VEGF and p53 levels — see Sec. 2.4). If a cell is ready to divide,
the daughter cell is placed in the adjacent cell with the largest oxygen concentra-
tion. If there is no empty site, the cell fails to divide and dies. The mechanism for
cell death or apoptosis differs between normal and cancer cells. In normal cells, if
the intracellular level of p53 exceeds a threshold value (which depends on the cel-
lular composition of its nearest neighbours), then the cell dies. By contrast, under
low oxygen, cancer cells become quiescent, suspending most cell functions, includ-
ing proliferation. On entering this state, a clock is started. It is incremented by
unit steps for each timestep that the cell remains quiescent. If the clock reaches a
threshold value then the cell dies. However, if the oxygen level increases above the
threshold for cancer cell quiescence then the cell recommences cycling and its clock
is reset to zero.

2.4. The subcellular level

We formulate systems of ordinary differential equations (ODEs) to describe the
evolution of the chemicals that control the subcellular processes of interest. These
include progress through the cell cycle, VEGF and p53 expression.

The cell cycle is regulated by complex interactions between a large number of
proteins, the key components being the families of cyclin-dependent kinases (CDKs)
and the cyclins. The activity of cyc-CDK complexes is low during G1 and becomes
high after transition. In addition, activities of anaphase protein complex (APC)
and the protein Cdh1 are high in G1 but become low after the G1/S transition.
For simplicity, we base our work on the model of Tyson and Novak,54 which cap-
tures the essential features of the cell cycle and can be written in the following
form:

dx

dt
=

(k′
3 + k′′

3A)(1 − x)
J3 + 1 − x

− k4myx

J4 + x
, (2.4)

dy

dt
= k1 − (k′

2 + k′′
2x)y, (2.5)

dm

dt
= µm

(
1 − m

m∗

)
, (2.6)

where x ≡ [Cdh1] is the concentration of active Cdh1/APC complexes, y ≡ [Cyc]
is the concentration of cyclin-CDK complexes and m is the mass of the cell. The
parameters ki (i = 1, 2, 3, 4) and Ji (i = 3, 4) are positive constants and A represents
a generic activator. In Eq. (2.6), µ is the cell growth rate and m∗ is the mass of an
adult cell.

Equations (2.4)–(2.6) can exhibit mono- and bi-stability, with the cell mass m

as a bifurcation parameter. For low values of m there is a single stable steady
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state with a high value of x and a low value of y — this corresponds to G1. As m

increases, the system becomes bistable and a new stable steady state characterised
by a high value of y and a low value of x emerges. For a critical value of m the
latter becomes the only stable steady state and the system switches to this state,
corresponding to the S phase. After the cell divides, m decreases, and the system
is re-set to the “G1 phase steady state”.

Guided by experimental results presented in Ref. 22 and the hypothesis that
under hypoxia expression of the regulatory protein p27 increases,27 we generalise
Eqs. (2.4)–(2.6) and study the (non-dimensionalised) model (see Ref. 3 for full
details):

dx

dτ
=

(1 + b3u)(1 − x)
J3 + 1 − x

− b4mxy

J4 + x
, (2.7)

dy

dτ
= a4 − (a1 + a2x + a3z)y, (2.8)

dm

dτ
= ηm

(
1 − m

m∗

)
, (2.9)

dz

dτ
= χ(m) − c2

P

B + P
z, (2.10)

du

dτ
= d1 − (d2 + d1y)u, (2.11)

where now P is the oxygen tension (see Eq. (2.2)), z is the p27 concentration and
u is the concentration of phosphorylated retinoblastoma (RB). In Eqs. (2.8)–(2.11)
we assume that normal and cancer cells differ only in the rates at which they
produce p27. For normal cells, p27 expression is regulated by cell size and we fix
χ(m) = cn

1 (1 − m
m∗

). For cancerous cells, this size-regulation is lost and χ(m) = ct
1.

To account for the lower levels of p27 observed in cancer cells compared to normal
cells44 we further assume that the maximum rate of p27 synthesis in normal cells
exceeds that in cancer cells (i.e. cn

1 > ct
1).

Equation (2.10) renders explicit how our cell cycle model is coupled to the tissue
level by the oxygen concentration. As we now explain, the other intracellular pro-
cesses of interest (i.e. VEGF production and apoptosis) are also influenced by P . In
normal and cancer cells hypoxia stimulates the expression of VEGF and the protein
p53. In normal cells p53 stimulates apoptosis and may inhibit VEGF production.49

In cancer cells mutations in p53 are common and the protein may upregulate VEGF
production and/or prevent apoptosis.

We denote by p and q the concentrations of p53 and VEGF within a given cell
and assume that their evolution is modulated by P in the following manner:

dp

dt
= k7 − k′

7P

C + P
p, (2.12)

dq

dt
= ξ(p, q) − k′

8P

D + P
q, (2.13)
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where

ξ(p, q) =




k8 − kn
8

pq

Jn
s + q

for normal cells,

k8 + kt
8

pq

J t
s + q

for cancer cells

and all parameters are positive. Thus VEGF expression increases under hypoxia.
Further p53 increases VEGF production in cancer cells and decreases it in normal
cells. The intracellular levels of p and q are assigned to the automaton state vector
(see Sec. 2.3).

2.5. Numerical algorithm

When performing simulations, the following algorithm is used on each timestep:

(1) Update the vascular network using the structural adaptation rules;
(2) Calculate the blood flow and haematocrit at all points within the vascular

network;
(3) Update the oxygen and VEGF profiles by solving the relevant boundary value

problems;
(4) Update the elements of the cellular automaton, and the intracellular variables

associated with each non-empty element according to whether it is occupied by
a normal or cancerous cell.

Further details and a discussion of the parameter values can be found in Ref. 5.

2.6. Simulations

Figures 2–4 show how the spatial composition of the tissue changes over time while
Fig. 5 summarises the dynamics of the tumour cells. As stated in Sec. 2.1 there
is a single inlet (outlet) to the vasculature located in the bottom left (top right)
hand corner of the tissue. As a result, the incoming haematocrit becomes diluted
as it passes through the hexagonal lattice. This creates a heterogeneous oxygen
distribution across the domain, with oxygen levels being highest near the inlet and
outlet. Over time, the tumour cells proliferate and spread through the tissue towards
the oxygen-rich regions. As the number of tumour cells increases, their demand for
oxygen outstrips that available from the vasculature, leading to the formation of
quiescent cells. These cells produce VEGF which diffuses through the tissue (see
Eq. (2.3) and Figs. 3 and 4), stimulating vessel adaptation (see Eq. (2.1)) and
biasing blood flow towards low oxygen regions. If the vasculature does not adapt
to the VEGF stimulus quickly enough then the quiescent cells die. VEGF levels
also decline and blood flow to the remaining tumour cells rises, enabling them
to increase in number until their demand for oxygen exceeds that being supplied,
and so the cycle repeats, with pronounced oscillations in the number of quiescent
cells (see Fig. 5). In order to highlight the key role played by VEGF in creating
these oscillations, also presented in Fig. 5 are the results of a simulation which was
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Fig. 2. Series of panels showing the initial spatial distribution of the cells, the oxygen concen-
tration, the VEGF concentration, and the radii and haematocrit associated with each branch of
the vascular network, the width of the lines being proportional to the vessel radii and the colour
intensity being indicative of the haematocrit (dark = high levels of H). We note that the seeded
tumour is surrounded by a number of empty sites in which it may locate its progeny. From the
plots on the right-hand side we observe that the oxygen is distributed nonuniformly across the
domain, with the highest levels occurring near the vessel inlet (bottom left corner) and the outlet
(top right corner) and corresponding to regions where the haematocrit is largest. Since there are
no quiescent cells, there is no VEGF present. Haematocrit and oxygen are maximal (initially all
vessels have the same radii) along the diagonal connecting the vessel inlet and outlet.
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Fig. 3. Series of plots showing how the initial conditions presented in Fig. 2 have developed
at t = 30 (dimensionless time units). The tumour has increased in size and contains regions of
quiescence which produce trace amounts of VEGF. The oxygen and vessel profiles remain similar.
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Fig. 4. Series of plots showing how the simulation presented in Figs. 2 and 3 has developed at
t = 90 (dimensionless time units). The tumour continues to expand into the tissue region. There
are sufficient numbers of quiescent cells to elicit an angiogenic response, with VEGF localised in a
neighbourhood of the quiescent cells (compare the profiles on the left hand side). The profiles on
the right hand side show that the VEGF has caused remodelling of the vasculature, with blood
flow and oxygen supply (haematocrit) being directed primarily towards the tumour mass.

identical in all aspects except that vascular adaptation was independent of VEGF
(kV

m = 0 in Eq. (2.1)). In both cases, the tumours grow to similar sizes. However,
when vascular adaptation is independent of VEGF, the evolution is monotonic, the
oscillations in the cell populations disappear and the number of quiescent cells is
consistently much lower. These results are new and show how coupling between the
different spatial scales can effect not only the tumour’s growth dynamics but also
its spatial composition, i.e. the proportion of proliferating and quiescent cells that
it contains.

3. Chemotherapy

We now investigate how the dynamics of the normal and cancer cells change when
a chemotherapeutic drug is introduced. We assume that the drug is continuously
administered to the vessels and, hence, that its concentration at the inlet vessel is
constant. We calculate the drug concentration θvess within the vascular network in
a manner similar to that used to determine the haematocrit, H (see Sec. 2.1). In
particular, we assume that the drug is advected with the blood and is partitioned
at branch points such that the amount of drug entering the daughter vessels is
proportional to their respective flow velocities. As with the oxygen, we view the
vessels as distributed sources of drug and assume that, once the drug leaves the
vessels, it diffuses through the tissue and is taken up by the normal and healthy
cells.
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Fig. 5. Series of curves showing how, for the simulations presented in Figs. 2–4, the numbers of
proliferating (upper panel), quiescent tumour cells (middle panel) and total number of tumour
cells (lower panel) change over time. While there is a fairly steady increase in the number of
proliferating cells, the dynamics of the quiescent cells are more complex, initially undergoing
oscillations of increasing amplitude. For t > 80, the tumour is sufficiently large that the quiescent
cells are never eliminated: quiescent cells that die are replaced by proliferating cells that become
quiescent. The dot-dashed lines show the evolution of a tumour which is identical in all respects
except that its vasculature is not regulated by VEGF (so that kV

m = 0 in Eq. (2.1)). While in both

cases the tumour reaches a similar equilibrium size, when vascular adaptation is independent of
VEGF the oscillations in the cell populations disappear and the number of quiescent cells is much
lower.

Guided by Eq. (2.2) and denoting by θ the drug concentration in the tissue,
on each timestep we solve the following diffusion equation, with no-flux boundary
conditions, to determine θ:

0 = Dθ∇2θ + hθ(θvess − θ) − λdrugθ. (3.1)

In (3.1), Dθ denotes the assumed constant diffusion coefficient of the drug, hθ the
rate at which it is transported across the vessel wall and λdrug the assumed constant
rate at which cells absorb the drug (we assume that λdrug is the same for normal
and cancerous cells). We remark that natural decay of the drug has been assumed
to be dominated by its uptake by the normal and cancer cells (for simplicity, only):
it would be straightforward to extend the model to account for drug decay also.

Having determined θvess and θ, it remains to specify the drug’s mode of action.
Ultimately, we hope to tailor our model to specific drugs according to the stage(s)
of the cell cycle at which they act. However, for simplicity, here we assume that the
drug works in the following manner. When a cell attempts to divide, if the local
drug concentration exceeds a threshold value, then the cell fails to divide and is
itself killed.
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Fig. 6. Series of plots showing how the tissue presented in Fig. 2 responds when an anti-
proliferative drug is continuously administered through the vasculature. For comparison with
Fig. 3, the profiles are plotted at time t = 30 (dimensionless time units), with the drug distri-
bution replacing the VEGF profile. The drug levels are highest near the inlet and outlet to the
vasculature and this causes extensive killing of normal cells, leaving the tumour relatively free of
damage.

With these changes we are able to use our model to test the response of our vir-
tual tumour to different drugs. Repeated simulations suggest that, when the drug is
used, three qualitatively different types of behaviour emerge: the drug is ineffective
and the tumour continues to colonise the tissue (since the dynamics here are similar
to those without the drug, no results are presented), the tumour is reduced in size,
but not completely eliminated (see Figs. 6–8), or the drug successfully eliminates
the tumour (Figs. 9–11).

The simulation presented in Figs. 6–8 corresponds to a case for which the drug
fails to eliminate completely the tumour. It reduces the mean size of the tumour
at long times and alters its composition so that it comprises predominantly pro-
liferating cells. Further the spatio-temporal oscillations observed in the absence of
treatment (hθ = 0) become more pronounced (see Fig. 12, hθ = 90) as a result of
additional cell death. In more detail, the quiescent tumour cells produce VEGF,
stimulating enhanced blood flow and, hence, increased drug delivery. The drug
causes the tumour to shrink but, as oxygen consumption is reduced, the number of
quiescent cells falls and, in consequence, blood flow and drug delivery decline. The
tumour then proliferates into empty regions where the normal cells have been killed
by the drug and where oxygen levels are high. The formation of quiescent regions
within the tumour mass then stimulates vascular remodelling, redirecting oxygen
and drug to these regions (compare Figs. 6–8). The simulation also provides some
indication of the degree of damage sustained by the healthy cells. We note that
cells located near the inlet and outlet are killed since drug levels are highest there.
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Fig. 7. Series of plots showing how the tissue presented in Figs. 2 and 6 evolves at t = 112 when
an anti-proliferative drug is continuously administered through the vasculature. The quiescent
tumour cells produce VEGF, stimulating enhanced blood flow and drug delivery to the tumour
region. The drug causes the tumour to shrink, reducing oxygen consumption, the number of
quiescent cells and, in consequence, blood flow and drug delivery there. At later times the tumour
can repopulate the region and increase in size (see Fig. 8 and the relevant curve in Fig. 12).
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Fig. 8. Series of plots showing how the tissue presented in Figs. 2, 6 and 7 evolves at t = 190
when an anti-proliferative drug is continuously administered through the vasculature. The tumour
is spreading further into the tissue but has a more fragmented and less compact morphology
than its untreated counterpart. Remodelling of the vasculature caused by VEGF expression from
quiescent cells has led to greater localisation of the oxygen within the tumour region (compare
with Fig. 7).
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Fig. 9. Series of plots showing how the tissue presented in Fig. 2 evolves at t = 30 when an anti-
proliferative drug is continuously administered through the vasculature. The drug is identical to
that used to generate Figs. 6–8, except that it crosses the vessel wall more rapidly (hθ in Eq. (3.1)
increased from hθ = 90 to hθ = 100). The increase in drug levels causes a marked reduction in the
number of tumour cells (compare with Fig. 6) and more extensive damage to the healthy cells.
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Fig. 10. Series of plots showing how the tissue presented in Figs. 2 and 9 evolves at t = 100 when
an anti-proliferative drug is continuously administered through the vasculature. The tumour is
being progressively eliminated.

We remark also that the times used in Figs. 6–8 do not coincide with those used in
Figs. 3 and 4: they were chosen to illustrate best the phenomena being described
(and similarly in Figs. 9–11).

The simulation presented in Figs. 9–11 shows how the drug may eliminate the
tumour. The drug is identical to that used in Figs. 6–8, except that it crosses the
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Fig. 11. Series of plots showing how the tissue presented in Figs. 2, 9 and 10 evolves at t = 130
when an anti-proliferative drug is continuously administered through the vasculature. The tumour
has been successfully eliminated, without completely destroying the normal cells.
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Fig. 12. Series of curves summarising the results of Figs. 2–4 (hθ = 0), 6–8 (hθ = 90) and 9–11
(hθ = 100). For each simulation, we show how the numbers of proliferating and quiescent tumour
cells and the total number of tumour cells evolve over time. Key: hθ = 0, solid line; hθ = 90,
dashed line; hθ = 100, dotted line.

vessel walls more quickly (hθ in Eq. (3.1) is increased from hθ = 90 in Figs. 6–8
to hθ = 100 in Figs. 9–11). In addition to causing more widespread damage to
the normal cells, at early times the increased drug levels also reduce the number
of tumour cells (compare Figs. 6 and 9). At later times, drug levels remain high,
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preventing the tumour from spreading through the tissue (compare Figs. 7 and 10)
and eventually eliminating it (compare Figs. 8 and 11). We remark that fluctuations
in VEGF cause vessel remodelling, fluctuations in the local blood flow and, hence,
changes in the oxygen and drug levels. These allow the tumour to enjoy periods of
recovery before it is eliminated (see Fig. 12). We also note that while some normal
cells are killed by the drug, they are not completely destroyed by the drug when
the tumour is eliminated (the drug elicits a stronger response in the tumour cells
since they proliferate more rapidly than the normal cells). Thus if treatment were
halted at t = 90 then the healthy cells would eventually repopulate the tissue.

Figure 12 summarises the tumour’s dynamics for the three simulations presented
in Figs. 2–4 (hθ = 0), 6–8 (hθ = 90) and 9–11 (hθ = 100). As hθ increases, and
more drug is delivered, oscillations in the number of proliferating cells become more
marked. For sufficiently large values of hθ (here hθ ≥ 100) the drug eventually
eliminates the tumour.

4. Conclusions

We have shown how a multiscale model can be used to study the response of a
vascular tumour to continuous infusion with chemotherapy. We have used a modified
version of a hybrid cellular automaton model that was originally developed by
Alarcón et al.4,5 and which incorporates coupling between phenomena occurring on
different spatial scales. By treating the vessels as continuous sources (or sinks) of
oxygen and drug (or VEGF), physically unrealistic artefacts of the earlier models
have now been removed and the diffusible species are able to spread across the
entire tissue region. As a result, we observe spatio-temporal oscillations in the tissue
composition when vascular adaptation is regulated by VEGF (see Fig. 5), a feature
that, to our knowledge, has not been reported previously in similar mathematical
models of vascular tumour growth.

McDougall et al.36 used a similar model of vascular adaptation and blood flow to
study the distribution of blood-borne chemotherapy. However, they did not consider
the cytotoxic effect of the drug on the underlying tissue. By contrast, we predict
the cell kill that results when a particular drug is used. Further, since in our model
there is coupling between the subcellular, cellular and macro- or vascular scales, we
are also able to determine the (indirect) impact that changes in the cellular com-
position of the tissue have on the vasculature (this being relevant when a standard
chemotherapeutic drug is administered) and vice versa (this being relevant when
an antiangiogenic drug is used).

Our simulations show that when a drug that targets proliferating cells (tumour
and normal) is continuously administered via the vasculature, the outcome depends
on the choice of parameter values and takes three possible forms: the tumour is
successfully eliminated by the drug; the tumour’s invasion of the healthy tissue
continues; or, the tumour grows to a finite size, with more pronounced spatio-
temporal oscillations in its composition.
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While the results we obtain are qualitatively realistic, there are many avenues
for further investigation. These stem, to a large extent, from the fact that the sub-
models we have employed are rather simplistic. Since the framework we present
is general (see Fig. 1), there is considerable scope for incorporating more realistic
submodels and establishing conditions under which the more complex models yield
different qualitative behaviour. This is a key issue facing researchers developing
multiscale models.10 For example, we could implement a more detailed cell cycle
model and use it to study the impact of drugs that act at one or more of the phases
of the cell cycle or those which target the tumour’s vasculature. Conversely, we
could introduce a simpler model in which decisions about cell division are based
solely on a cell’s local environment. While these investigations may appear rather
theoretical in nature, comparing the results that they generate should provide use-
ful insight into the level of detail that is needed to model accurately the system’s
response to therapy. In particular, we anticipate that the degree of detail needed
will depend on a particular drug’s mode of action (e.g. whether it is cell-cycle spe-
cific). Equally, following Gatenby et al.,23,24,50 we could include a more detailed
description of cellular metabolism and investigate the role of pH on tumour inva-
sion. Other important mechanisms that are the subject of ongoing work include a
more detailed description of angiogenesis (with explicit treatment of capillary tip
formation and tip-to-tip anastomosis), the impact of mechanical effects (e.g. con-
tact inhibition of cell proliferation13,32 and the collapse of immature vessels under
pressure12) and cell movement.6

We could also adapt the model to compare the tumour/tissue response to differ-
ent drug delivery protocols, including combination treatments and possibly involv-
ing novel types of gene therapy that target hypoxic regions41 and allowing for
tumour cell heterogeneity, with some subclonal populations being resistant to ther-
apy. The simulations we presented focused on the tumour’s response to continuous
infusion with a chemotherapeutic drug but also highlighted the extensive damage
to normal cells that is an inevitable consequence of such highly toxic compounds.
In practice these side-effects mean that the drugs are administered as a series of
boluses, rather than by continuous infusion. Our model could easily be adapted to
study this more realistic situation. Other interesting directions for future research
involve using kinetic theory and statistical mechanics in place of cellular automata
to simulate cell dynamics11 and incorporating concepts from evolutionary game the-
ory to study carcinogenesis.26 In the latter case random genetic mutations introduce
heterogeneity into the cell population, the fitness of the different subpopulations
being influenced by intra- and extra-cellular factors. As a result, we could inves-
tigate how tumours are initiated and whether environmental conditions select for
particular genetic mutations.

One weakness of our multiscale model that stems from its complexity is the
reliance on numerical simulations to obtain solutions. This may limit the applica-
bility of the model. For example, it may be infeasible to run large numbers of simu-
lations on large spatial domains. However, by validating the model against detailed
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spatio-temporal data from, for example, mouse chamber assays,14 it should be pos-
sible to extract from the simulations averaged time activity curves, similar to those
presented in Figs. 5 and 12, showing how the numbers of tumour cells (proliferating
and quiescent) and normal cells, together with the mean vascular density, evolve
over time. These curves could then be fit to lumped parameter models, similar to
those being developed by Arakelyan et al.,7 before the (indirectly validated) ODE
models are used to study less detailed data from large scale clinical trials. In doing
this, it will of course be necessary to specialise the model to describe specific tumour
types47,52 and particular drugs.15,33,42 This is the subject of ongoing work.

One of the major challenges facing researchers in the Life Sciences is understand-
ing how processes interact on different length and time scales. Verbal reasoning is
not sufficient to compute the outcome of such complex interactions and we must
therefore use computational modelling. However, if we were to express every known
reaction computationally, we would arrive at a model that was computationally
intractable and impossible to parametrise. Therefore we must use coarse-graining
and herein lies the mathematical challenge. For example, in the modelling described
in this paper we used for the cell cycle a very simple model that captured the essence
of certain aspects of the cell cycle (which has been modelled using up to 60 equa-
tions). Can we make similar simplifications for other biochemical networks? Can
we be certain that we have not lost key information by making this simplification?
That is, how robust are the subsequent models? Is it possible that we could describe
the framework we presented at a continuum level which would capture the key fea-
tures of this model yet allow us more easily to scale up to three spatial dimensions
and to larger, more realistic, sizes of tissue? It may well be that we need a suite of
models depending on what question that we can answer.

Although there have been some attempts to tackle aspects of the issues men-
tioned above, such as using Boolean switches to understand complex biochemical
networks (instead of the more complicated modelling approach of using coupled
ordinary differential equations), there has been no systematic approach and these
are all open questions that will stimulate theoreticians and experimentalists for
many years to come.

Acknowledgments

T.A. thanks the Engineering and Physical Sciences Research Council for financial
support under grant GR/509067. H.M.B. thanks the EPSRC for funding as an
Advanced Research Fellow. This work was supported in part by NIH grant CA
113004. The authors wish to acknowledge the support provided by the funders of
the Integrative Biology project: The EPSRC (ref no: GR/S72023/01) and IBM.

References

1. J. A. Adam, A mathematical model of tumour growth. II Effects of geometry and
spatial uniformity on stability, Math. Biosci. 86 (1987) 183–211.



August 3, 2006 15:9 WSPC/103-M3AS 00152

Modelling the Response of Vascular Tumours to Chemotherapy 1239

2. T. Alarcón, H. M. Byrne and P. K. Maini, A cellular automaton model for tumour
growth in inhomogeneous environment, J. Theor. Biol. 225 (2003) 257–274.

3. T. Alarcón, H. M. Byrne and P. K. Maini, A mathematical model of the effects
of hypoxia on the cell-cycle of normal and cancer cells, J. Theor. Biol. 229 (2003)
395–411.

4. T. Alarcón, H. M. Byrne and P. K. Maini, Towards whole-organ modelling of tumour
growth, Prog. Biophys. Mol. Biol. 85 (2004) 451–472.

5. T. Alarcón, H. M. Byrne and P. K. Maini, A multiple scale model for tumour growth,
Multiscale Model Sim. 3 (2005) 440–475.

6. A. R. Anderson, A hybrid mathematical model of solid tumour invasion: The impor-
tance of cell adhesion, Math. Med. Biol. 22 (2005) 163–186.

7. L. Arakelyan, Y. Merbl and Z. Agur, Vessel maturation effects on tumour growth:
Validation of a computer model in implanted human ovarian carcinoma spheroids,
Eur. J. Cancer 41 (2005) 159–167.

8. R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumor
growth: The contribution of mathematical modelling, Bull. Math. Biol. 66 (2004)
1039–1091.

9. B. Basse, B. C. Baguley, E. S. Marshall, G. C. Wake and D. J. Wall, Modelling the
flow cytometric data obtained from unperturbed human tumour cell lines: Parameter
fitting and comparison, Bull. Math. Biol. 67 (2005) 815–830.

10. N. Bellomo and P. K. Maini, Preface and Special issue on “Multiscale Cancer Mod-
elling — A New Frontier in Applied Mathematics”, Math. Mod. Meth. Appl. Sci. 15
(2005) iii–vi; 1619–1794.

11. A. Bellouquid and M. Delitala, Mathematical methods and tools of kinetic theory
towards modelling complex biological systems, Math. Mod. Meth. Appl. Sci. 15 (2005)
1639–1666.

12. Y. Boucher and R. K. Jain, Microvascular pressure is the principal driving force for
interstitial hypertension in solid tumours: Implications for vessel collapse, Cancer Res.
52 (1992) 5110–5114.
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